Exact number of solutions of stationary reaction-diffusion equations
نویسندگان
چکیده
We study both existence and the exact number of positive solutions of the problem . All righ . Iturria ðPkÞ k ju0j u0 0 þ f ðuÞ 1⁄4 0 in ð0;1Þ; uð0Þ 1⁄4 uð1Þ 1⁄4 0; <: where k is a positive parameter, p > 1, the nonlinearity f is positive in (0,1), and f ð0Þ 1⁄4 f ð1Þ 1⁄4 0. Assuming that f satisfies the condition lims!1 f ðsÞ ð1 sÞ 1⁄4 x > 0 where h 2 ð0; p 1Þ, we study its behavior near zero, and we obtain existence and exactness results for positive solutions. We prove the results using the shooting method. We show that there always exist solutions with a flat core for k sufficiently small. As an application, we prove the existence of a non-negative solution for a class of singular quasilinear elliptic problems in a bounded domain in R having a flat core in a ball. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
On the Number of Stationary Patterns in Reaction-diffusion Systems
We study systems of two nonlinear reaction-diffusion partial differential equations undergoing diffusion driven instability. Such systems may have spatially inhomogeneous stationary solutions called Turing patterns. These solutions are typically non-unique and it is not clear how many of them exists. Since there are no analytical results available, we look for the number of distinct stationary ...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملTime–space White Noise Eliminates Global Solutions in Reaction Diffusion Equations
We prove that perturbing the reaction–diffusion equation ut = uxx + (u+) p (p > 1), with time–space white noise produces that solutions explodes with probability one for every initial datum, opposite to the deterministic model where a positive stationary solution exists.
متن کاملGeneralized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability
We prove existence, uniqueness, and stability of transition fronts (generalized traveling waves) for reaction-diffusion equations in cylindrical domains with general inhomogeneous ignition reactions. We also show uniform convergence of solutions with exponentially decaying initial data to time translates of the front. In the case of stationary ergodic reactions the fronts are proved to propagat...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 216 شماره
صفحات -
تاریخ انتشار 2010